Discrete wavelet transform for tool breakage monitoring
نویسندگان
چکیده
Detection of tool breakage is of vital importance in automated manufacturing. Various methods have been attempted, and it is considered that the use of discrete wavelet transform (DWT), which is much more efficient and just as accurate wavelet analysis, may provide a realistic solution to the detection of tool breakage in operation. The DWT uses an analyzing wavelet function which is localized in both time and frequency to detect a small change in the input signals. In addition, it requires less computation than Fast Fourier Transformation (FFT). This paper discusses a tool breakage monitoring system based on DWT of an acoustic emission (AE) and an electric feed current signal using an effective algorithm. The experiment results show overall 98.5% reliability and the good real-time monitoring capability of the proposed methodology for detecting tool breakage during drilling. 1999 Elsevier Science Ltd. All rights reserved.
منابع مشابه
On-line detection of the breakage of small diameter drills using current signature wavelet transform
This paper presents on-line tool breakage detection of small diameter drills by monitoring the AC servo motor current. The continuous wavelet transform was used to decompose the spindle AC servo motor current signal and the discrete wavelet transform was used to decompose the feed AC servo motor current signal in time–frequency domain. The tool breakage features were extracted from the decompos...
متن کاملReal-time tool condition monitoring using wavelet transforms and fuzzy techniques
In this paper, wavelet transforms and fuzzy techniques are used to monitor tool breakage and wear conditions in real time according to the measured spindle and feed motor currents, respectively. First, the continuous and discrete wavelet transforms are used to decompose the spindle and feed ac servo motor current signals to extract signal features so as to detect the breakage of drills successf...
متن کاملA Fast Haar Transform and Concurrent Learning - based Monitoring Approach and Its Application to Tool Breakage Detection
This paper describes an effective monitoring approach for manufacturing processing by combining the recursive in-place growing FIR-median hybrid (RIPG-FMH) filters, the in-place fast Haar transform (IP_FHT) and the concurrent learning (CL). Meanwhile, the approach is applied to detect tool flute breakage during end milling by analyzing the feedmotor current signatures. RIPG_FMH can preserve the...
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کامل